Development of HMPE fiber for deepwater permanent mooring applications

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sérgio Leite</td>
<td>Lankhorst Ropes</td>
</tr>
<tr>
<td>Peter Davies</td>
<td>Ifremer</td>
</tr>
<tr>
<td>Martin Vlasblom</td>
<td></td>
</tr>
<tr>
<td>Bill Fronzaglia</td>
<td>DSM Dyneema</td>
</tr>
<tr>
<td>Jorn Boesten</td>
<td></td>
</tr>
</tbody>
</table>
Agenda

- Fiber properties
- Rope properties
- Why use it?
- Conclusions
Three world class players teaming up

Lankhorst Ropes
One of the largest rope manufacturers in the world
Almost 2 decades working with Dyneema®
Presence in Portugal and Brazil

Ifremer
French Ocean Research Institute
Over 20 years experience in testing of high performance fibers and ropes

DSM Dyneema
Inventor of the Dyneema®, the world’s strongest fiber™
Dedicated to innovation
Largest global supplier of HMPE fiber
Development of HMPE fiber for deepwater permanent mooring applications

<table>
<thead>
<tr>
<th>Stretch</th>
<th>2000 m</th>
<th>3000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyester Rope</td>
<td>40 m</td>
<td>60 m</td>
</tr>
<tr>
<td>Rope with Dyneema®</td>
<td>8 m</td>
<td>12 m</td>
</tr>
</tbody>
</table>

- Polyester creates greater horizontal offset
- **Dyneema®** will provide reduced values

![Image of Dyneema® rope](image.png)
HMPE to PET comparison

Lighter, compacter, stiffer

- Rope made with DM20, when compared with polyester will
 - Be 60% lighter
 - Have a 30% smaller diameter
 - Offer excellent fatigue properties
 - Be 3-4 times stiffer

<table>
<thead>
<tr>
<th>MBL</th>
<th>Polyester kg/m</th>
<th>DM20 kg/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>630t</td>
<td>14,5</td>
<td>5,9</td>
</tr>
<tr>
<td>1250t</td>
<td>29,0</td>
<td>11,5</td>
</tr>
<tr>
<td>2000t</td>
<td>46,8</td>
<td>18,6</td>
</tr>
</tbody>
</table>
HMPE fiber grades

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th>Reduced creep</th>
<th>Further reduced creep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyneema® fiber</td>
<td>SK75</td>
<td>SK78</td>
<td>DM20</td>
</tr>
<tr>
<td>Titer</td>
<td>1740 dtex</td>
<td>1740 dtex</td>
<td>1740 dtex</td>
</tr>
<tr>
<td>Tenacity</td>
<td>35 cN/dtex</td>
<td>35 cN/dtex</td>
<td>31 cN/dtex</td>
</tr>
<tr>
<td>Modulus</td>
<td>1160 cN/dtex</td>
<td>1160 cN/dtex</td>
<td>920 cN/dtex</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>3.5%</td>
<td>3.5%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Typical use</td>
<td>Work ropes</td>
<td>MODU mooring</td>
<td>Permanent mooring</td>
</tr>
</tbody>
</table>
DM20 fiber
Step change creep properties – creep elongation

- Accelerated testing are performed at elevate temperatures to provide results in acceptable time frame: 70°C and 300 MPA = 20% MBL
DM20 fiber
Step change creep properties – creep rate

- Creep: 70°C & 300 MPA = load of 20% MBL
- Creep rate DM20 is 50 times lower than SK78 in normal offshore conditions
HMPE fiber Rope samples

- 8 strand sub-rope samples (spliced)

<table>
<thead>
<tr>
<th>Material</th>
<th>Ø</th>
<th>Break strength</th>
<th>Test</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK78</td>
<td>29 mm</td>
<td>600 kN</td>
<td>Stiffness, Creep</td>
<td>Ifremer</td>
</tr>
<tr>
<td>DM20</td>
<td>34 mm</td>
<td>900 kN</td>
<td>Stiffness, Fatigue</td>
<td>DNV</td>
</tr>
<tr>
<td></td>
<td>52 mm</td>
<td>1800 kN</td>
<td>Stiffness</td>
<td>Lankhorst Ropes</td>
</tr>
</tbody>
</table>
Rope with DM20 fiber
Excellent properties for permanent mooring

- Ifremer – France: Ø 29mm rope: 67 t MBL
- Test conditions: 30°C / 45%MBL
- SK78 creep failure at 30% elongation; DM20 showed 2.5% elongation; only minor part is creep
Rope with DM20 & SK78

Stiffness

- Initially DM 20 is stiffer than SK78
- DM 20 stiffens little after first loading 10% MBL
- After 100 cycles, DM 20 has a stiffness 10% lower than SK78
Rope with DM20 fiber
Dynamic Stiffness

- Increasing mean load
 = increased stiffness

- Increasing amplitude
 = decreasing stiffness
Rope with DM20 & SK78
Dynamic Stiffness

- Increasing mean load = increased stiffness

![Graph showing dynamic stiffness for SK78 and DM20 ropes. The graph includes two linear equations:
 - SK78: Stiffness (N/tex) = 0.87*ML + 101, R² = 0.9752
 - DM20: Stiffness (N/tex) = 0.895*ML + 84.6, R² = 0.9795

Legend:
- SK78
- DM20
- Linéaire (SK78)
- Linéaire (DM20)
Rope with DM20 fiber
Stiffness testing

- After the stiffness testing a permanent strain of 1,5% was recorded
Rope with DM20 fiber
Fatigue

- DNV: Ø 34 mm, after 10,000 cycles between 5-50% MBL – ISO Standard, the obtained break strength result is 118% of the break strength value of the non cycled rope = Excellent fatigue life DM20
Why DM20?
Operational benefits in every project stage

Design stage

- Optimizing between riser type & mooring line stiffness
- More vessels of opportunity for transport & installation
Why DM20?
Operational benefits in every project stage

Installation stage
- Smaller or fewer vessels required for transport & installation
- Lower weights, thus faster & safer installation
- Longer rope lengths, thus fewer connections
Why HMPE
Operational benefits

- The concept balancing OPEX savings & CAPEX investment has been proven by many in many applications....

- MODU mooring lines, seismic lines, offshore lifting slings, deepwater lowering and lifting lines

- Petrobras, Shell, Anadarko, ConocoPhillips, Transocean, Delmar, Statoil, SBM, APL, PGS, Prosafe
Conclusions

- DM20 new product in HMPE portfolio with the known product benefits of HMPE
- Ropes made with DM20 fiber match industry requirements for permanent mooring
- Creep prediction model is again available for DM20
- Mooring ropes with DM20 offer OPEX savings during design and installation stage of deepwater systems.
Thank you

Sérgio Leite
Peter Davies
Martin Vlasblom
Bill Fronzaglia
Jorn Boesten

Lankhorst Ropes
Ifremer
DSM Dyneema