New legislation places very tight limits on car emissions, with strict targets on CO\textsubscript{2} emissions. DSM focuses on driving forward solutions that significantly decrease environmental impact, leading to the development of a complete portfolio of thermoplastic products that answer the changing needs of the automotive industry.

One of the latest developments in turbo systems is to integrate the charge air cooler (CAC) into the air intake manifold (AIM), using liquid to more effectively cool the air instead of air-to-air systems. This drives up the temperature in the AIM (currently up to 230°C), as well as the mechanical requirements for the materials used. Integrating the CAC into the AIM reduces the length of piping previously needed to reach the air-to-air cooler in the front of the car, leading to increased engine responsiveness. For car manufacturers, this makes it possible to deliver higher performing engines while still meeting the new emission limits.

DSM offers a complete portfolio of high-performance materials for air intake manifolds whether they have an air-to-air CAC or an integrated liquid-cooled CAC. This includes Akulon® polyamide 6, Akulon Diablo polyamide 66, Stanyl® and Stanyl Diablo polyamide 46. The Diablo technology is engineered specifically for elevated continuous-use temperatures of 180-230°C.

AIM with integrated liquid-cooled CAC
Air intake manifolds with integrated liquid-cooled CACs achieve a giant step forward in improving engine responsiveness and reducing turbo lag, yet they require a great deal more from the plastic materials used to create them. Integrating the cooler into the AIM drastically changes the geometry of the manifold in a way that could cause a loss of stiffness and strength, which are critical at higher temperatures. The new geometry also requires materials with high weldability and weld line-aging resistance to maintain the part’s integrity. At the same time, the material must withstand exhaust gas recirculation (EGR) and blow-by.
Outperforming the competition: Stanyl Diablo

DSM’s solutions for high temperature and high pressure applications are Stanyl Diablo OCD 2100 and our latest innovation Stanyl Diablo HDT2700. These high-heat thermoplastics outperform competitive materials in thermal oxidative stability, maintaining high stiffness at elevated temperatures and pressure loads.

Best-in-class: Thermal stability

Best-in-class: Heat Deflection Temperature under load (HDT)
The new Stanyl Diablo HDT2700 has an improved HDT. The melting point in combination with the Heat Deflection Temperature (HDT) gives a good impression of the peak temperature resistance under a certain load.

Meet the new Akulon Diablo polyamide 66
The new Akulon Diablo HDT2500 withstands a 220°C continuous-use temperature and has a HDT of 245°C. Looking at long term heat aging, this new grade has a stable performance up to 220°C.

Both Stanyl Diablo HDT2700 and Stanyl Diablo OCD2100 have excellent mechanical strength to provide best-in-class weld strength and ensure part integrity under pressure pulsation loads. Stanyl Diablo, like our other grades for intake systems, withstands the current exhaust gas recirculation (EGR) and blow-by requirements. It maintains high stiffness, even while exposed to continuous-use temperatures up to 230°C.

Stanyl Diablo performance after 2000 h is 189% higher than performance of the next best alternatives

Akulon Diablo fills the gap between Akulon PA6 and Stanyl Diablo by combining long term heat aging performance and mechanical properties at 180-200°C.
Akulon® polyamide 6, the proven solution
For lower temperature AIM applications, Akulon polyamide 6 glass-filled, provides an optimal balance between density and mechanical properties. For increased safety and flexibility in manifold design, we also offer grades with improved burst pressure or laser weldability.

Case: Meet the extreme in high heat:
Mahle and DSM have jointly developed the world’s first high-volume use of high-heat plastic in an air intake manifold (AIM) that integrates a water-cooled charge air cooler (CAC). Stanyl® Diablo OCD 2100 is selected for this high-heat plastic AIM/CAC combination for use in BMW’s B48 engine. BMW uses the B48 engine in several different car models.

“Such a design can drive the AIM’s continuous operating temperature up to 220°C, which in turn boosts the mechanical demands on the materials used in those components. This new geometry also requires materials with robust weldability and weldline aging resistance in order to maintain the part’s integrity. The Stanyl Diablo fulfilled all customer requirements” says Mr. Valecka, project manager integrated manifold BMW B48 at Mahle.

The excellent mechanical properties of the OCD2100 material provide superb weld strength and ensures part integrity under pressure pulsation loads. The material outperforms competitive materials in regards to thermal oxidative stability, maintaining high stiffness at elevated temperatures and pressure loads.

Inventor of the Diablo technology
DSM is a market leader in the development of high temperature resistant thermoplastics for automotive engines. Diablo technology, invented and patented by DSM, improves the long term temperature resistance of materials such as Stanyl PA46 and Akulon PA6 that already has better high temperature performance than standard polyamides; and DSM is also using it to upgrade performance in its Akulon polyamide 6. DSM licenses the Diablo technology to other high temperature thermoplastics suppliers.

DSM Engineering Plastics
For further information, please see:
www.dsm.com/automotive
info.automotive@dsm.com

Europe
teil +31 46 47 73796
info-europe.dep@dsm.com

Americas
teil +1 800 333 4237
info-americas.dep@dsm.com

Asia Pacific
teil +86 21 6141 8188
info-asia.dep@dsm.com

Contact us today to discuss how DSM can help redesign your air intake manifolds to integrate a liquid charge air cooler, and create lighter and more efficient air induction systems.

Team:
Europe: Christian.Kilgus@dsm.com
US: Russell.Bloomfield@dsm.com
China: Cheng.Bian@dsm.com
Japan: Yosuke.Umeda@dsm.com
South Korea: Eli.Jang@dsm.com
India: Prasanna.Godbole@dsm.com

©DSM 2016

All information, advice and/or samples (“information”) are provided by or on behalf of DSM on an “as is” basis, without any further warranties as to the accuracy, usefulness, correctness or completeness thereof. Use or disclosure of or reliance on such information shall be for your own sole risk, account and responsibility and you will indemnify and hold DSM and its affiliates harmless from and against any and all damages or claims from third parties in respect of your receipt, use or disclosure of or reliance on the information.

The disclosure of information shall not be construed as granting you a license or any other intellectual property rights relating to such information. The obtaining of such license or rights shall be subject to separate negotiations.