Benefits of optimal omega-3 intake and status

Executive summary

With many positive health benefits, omega-3 long chain polyunsaturated fatty acids (PUFAs) are one of the most researched micronutrients in the world. Yet, in many regions around the globe, a high proportion of the adult population still does not have adequate omega-3 status and this could have a significant public health impact.

This whitepaper draws on the latest clinical and market data to demonstrate the importance of omega-3s in supporting human health. Highlighting key studies, it explains the vital function of omega-3s in cardiovascular health and risk reduction. It then provides a summary of continued positive research into omega-3s and brain health, as well as emerging areas such as eye and liver health.

In addition, the paper shares the findings of a new structured review to identify regions around the world considered most at risk of health issues due to low red blood cell (RBC) omega-3 fatty acid levels. This document explores the barriers to effective intake and the estimated healthcare costs of deficient omega-3 intake are also presented.
Benefits of optimal omega-3 intake and status

Introduction

To date, more than 30,000 scientific papers have been published citing omega-3 PUFAs. The greatest proportion (circa 20%) focuses on heart health, while brain health makes up the second largest volume of research at around 12%. The benefits during pregnancy and infancy, as well as for overall eye health, complete the top four research topics. As studies continue to emerge in these and other areas of human health, scientists gain a deeper understanding of how essential it is to obtain adequate intake of omega-3 fatty acids in the daily diet.

Scientific research has focused primarily on two types of omega-3 fatty acids – eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Together with alpha-linolenic acid (ALA), EPA and DHA are recognized as the main omega-3 fatty acids. There are, however, important differences between the three:

- **ALA:** this shorter-chain fatty acid acts as a source of energy when it is catabolized via beta oxidation, and as a building block for EPA and DHA. The body cannot produce it, but the quantities required can typically be obtained in the diet from sources such as vegetable oils like soy and canola, as well as nuts (especially walnuts) and flax seeds (linseed).

- **EPA and DHA:** functionally the most important omega-3s, these long chain fatty acids may be synthesized by the metabolic conversion (elongation and desaturation) of ALA. In humans, this conversion happens in very limited amounts. Therefore, it is essential to obtain preformed EPA and DHA in the diet in order to achieve adequate blood and tissue levels and prevent deficient states. Principally found in fatty fish, such as salmon, tuna, herring, sardine and anchovy. Marine algae are also a rich vegetarian source of EPA and DHA.

- Both EPA and DHA are important for, and play a key role in, overall health. Due to their different chemical structures, each performs a unique, but complementary function in the body. The most marked distinction is that unlike EPA, DHA is a structural component of every cell throughout the body – with significant quantities found in the heart, brain, nervous system, eyes and testes.

Benefits of optimal omega-3 intake and status

Typically recommended by healthcare practitioners to address immune modulation, pain and inflammation, omega-3s play an important role in supporting overall health, as well as chronic disease management and prevention. Low levels of PUFAs in the bloodstream are associated with a high risk of a number of chronic diseases, such as heart disease, cancer, autoimmune disease, depression and diabetes. Omega-3 RBC blood testing can be conducted by healthcare practitioners to determine whether an individual is at low (08%) or high (4%) risk of cardiovascular disease.

A recent meta-analysis suggests that insufficient omega-3 fatty acid intake and status may increase the risk of all-cause mortality. Published earlier this year in Scientific Reports, this systematic review analyzed 11 prospective observational studies involving more than 31,000 deaths among 371,965 participants from general global populations. It sought to evaluate the associations of dietary or circulating long chain PUFAs – specifically EPA and DHA – with the risk of all-cause mortality, to address previously identified inconsistencies:

- Potentially eligible studies were identified following a literature search of PubMed and EMBASE databases using a defined search strategy.
- 7 studies measuring dietary intake of long chain PUFAs were selected (published between 2004 and 2015).
- 4 studies measuring circulating long chain PUFAs were evaluated (published between 2008 and 2015).

The results of this extensive review found both dietary and circulating long chain omega-3 PUFAs to be significantly associated with reduced risk of all-cause mortality – with both EPA and DHA delivering similar results. In addition, while further, more-detailed research is recommended, the overall analysis shows that a 1% increase in RBC levels of EPA and DHA may reduce the risk of all-cause mortality by as much as 20%.
Omega-3s and cardiovascular health

Omega-3s are strongly associated with heart health benefits and cardiovascular risk reduction and there has been an extensive number of scientific papers devoted to the topic, which have primarily shown favorable results. The media, however, has given disproportionate coverage to some recent null studies, especially when compared to the magnitude of positive outcomes. The mixed messaging has resulted in confusion amongst both healthcare practitioners and consumers.

Recent research suggests that omega-3 fatty acids may reduce many risk factors associated with cardiovascular disease (CVD), including blood pressure, vascular function, endothelial dysfunction, inflammation, platelet reactivity and thrombosis, plasma triglyceride concentrations, heart rate and heart rate variability. Several recent reviews have shown that omega-3 fatty acids may also reduce mortality in ‘at-risk’ patients, by providing a therapeutic benefit across many physiological parameters affecting the heart.

The exact mechanism by which omega-3 fatty acids exert these protective cardiovascular effects remains an area of active research. It is, however, known that, as an integral part of cell membranes throughout the body, omega-3s influence the function of cell receptors and cell-to-cell communication. As such, these fatty acids are the starting point for the production of hormone-like bioactive substances, called eicosanoids, that regulate many functions in the body including blood clotting, the contraction and relaxation of muscles and artery walls, and modulation of inflammatory pathways. Such effects have been linked to a reduction in CVD and strokes.

The vast body of research undertaken in recent years to fully explore the effects of adequate intake of EPA and DHA on cardiovascular health provides compelling evidence of the following health benefits:

- Omega-3 PUFA therapy holds promise for primary and secondary prevention of cardiovascular diseases.4
- Epidemiological studies support the cardioprotective effects of EPA and DHA from fish and fish oils, particularly in the setting of primary prevention.5
- Higher circulating plasma and RBC levels of individual (EPA and DHA) and total omega-3 PUFAs are associated with lower mortality, especially from coronary heart disease (CHD), in older adults. This demonstrates the cardioprotective benefit of ensuring adequate dietary or supplemental intake of omega-3s.6
- The early dietary intake of long chain PUFAs – DHA and arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid, reduces a diet-induced increase in body weight and attenuates plasma triglyceride levels. It also improves cerebrovasculature and grey matter integrity.7
- A new randomized clinical trial concluded that omega-3 fatty acids may reduce adverse remodeling after a heart attack. A dose of 4 grams of omega-3 fatty acids a day for six months resulted a 5.8% reduction in left ventricular end-systolic volume index, a clinical marker that can predict patient outcome after a heart attack, when compared to a placebo.8

Formal recognition of the role of omega-3s in relation to cardiovascular health was given by the European Food Safety Authority (EFSA) in 2009 when it returned a positive opinion on EPA and DHA as contributing to “the maintenance of normal cardiac function.” Further consideration by EFSA led to three more detailed heart health claims:9

- EPA and DHA contribute to the normal function of the heart (based on a daily intake of 250 mg combined total).
- EPA and DHA contribute to the maintenance of normal blood pressure (based on a daily intake of 3 g).
- DHA contributes to the maintenance of normal blood triglyceride levels (based on a daily intake of 2 g).
- EPA and DHA contribute to the maintenance of normal blood triglyceride levels (based on a daily intake of 2 g combined total).

Investigations into the mode of action of omega-3s in combination with other heart-related medications have also reported important results for cardiovascular health, demonstrating a potential synergistic effect. For example, statins are widely prescribed to help lower the level of low density (LDL) cholesterol in the blood and reduce the risk of cardiovascular disease. A combination of EPA with statins has been shown to significantly decrease the incidence of coronary events by 19%.10

Additionally, it is critical to maintain an optimal omega-3:omega-6 balance in the diet. This is particularly important given that modern eating habits result in a much higher intake of omega-6 fatty acids – found in foods such as corn (maize), canola (rapeseed) and soy(a) oils – than recommended. In fact, to achieve a healthy ratio, individuals need to consume more omega-3 and less omega-6 than is typical in the Western diet, where the average omega-3:omega-6 ratio is often between 1:10 and 1:30. The guidelines published by expert bodies suggest that healthy ratios range between 1:4 and 1:2.11

Did you know?

There are ongoing clinical trials that, it is hoped, will help to build the market for drug development in cardiovascular space.12
Benefits of optimal omega-3 intake and status

Omega-3s and brain health

Omega-3s are a major and essential structural component of the brain. They are critical in supporting almost every area of brain function and development throughout every life stage, including brain development during infancy, attention and learning, cognitive health, memory support, and the reduction of depression symptoms.

Given this extensive involvement in vital physiological functions in the brain, the scientific community has turned its attention to learning more about omega-3s in this context. In light of social and healthcare issues raised by the increase in dementia and Alzheimer’s disease globally, studies to demonstrate the potential benefit of omega-3s could have profound public health implications.

Individuals of all ages, both with and without cognitive disorders, are target audiences for research:

- Omega-3 intake from fish sources is associated with a lower risk of cognitive impairment. Fish derived DHA intake is associated with a lower risk of dementia and Alzheimer’s disease, but without a linear dose-response relation.13
- Intake of DHA alone or in combination with EPA contributes to support memory health in older adults with mild memory complaints.14
- Individuals with a regular low intake of long chain omega-3 PUFAs, children with low literacy ability and who are under or malnourished, and older adults with Age Related Cognitive Decline (ARCD) or Mild Cognitive Impairment (MCI), may benefit the most from consuming long chain omega-3s, particularly DHA.15
- New evidence indicates that long chain omega-3 fatty acids exert a positive effect on brain functions in healthy older adults, by improving executive functioning abilities.16
- Fish oil intake may support memory health in MCI subjects; however further investigations are needed before definitive recommendations can be made.17
- 24-week supplementation with 900 mg/d DHA supports memory health in healthy older adults with ARCD.18
- DHA supplementation appears to offer a safe and effective way to improve reading and behavior in healthy, but underperforming children, from mainstream schools.19
- Omega-3 PUFA supplementation is more beneficial in individuals with Major Depressive Disorder (MDD) who take their daily supplement as an adjunct to anti-depressant medications, rather than either therapy alone.20

In addition, EFSA’s positive scientific opinion that a cause and effect relationship has been established between consumption of DHA and the contribution to normal brain development is a major boost; providing a major driver for further evidence based studies.

The expert EFSA panel noted the well-established role of DHA in cognitive performance across all age groups, when it approved the following statement in 2010:

- DHA contributes to the maintenance of normal brain function.

From fetal development during pregnancy through infancy and early childhood, EFSA recognizes that DHA has a positive influence in early life:

- DHA supports the development of fetal brain, eye and nervous system.21
- DHA can support visual activity, cognitive performance and reduces incidence of allergy.22,23,24
- DHA may help support memory health.25
Benefits of optimal omega-3 intake and status

Benefits beyond cardiovascular and brain health

The scope of research pertaining to omega-3s also encompasses a number of additional health platforms where initial positive findings are suggestive, but require further substantiation.

Vision:
Many studies and an EFSA approved health claim have prompted further interest:

- Omega-3s may help protect adult eyes from age-related macular degeneration and dry eye syndrome.
- It may also help the proper drainage of the intraocular fluid from the eye; so decreasing the risk of elevated eye pressure and glaucoma.
- In 2010, EFSA released its positive scientific opinion on the following health claim: "DHA contributes to the maintenance of healthy vision."

Liver:
There is promising evidence that omega-3s may improve liver function:

- Omega-3s have been shown to reverse liver pathology without related weight loss.
- Omega-3s are recommended for primary prevention of liver disease in individuals at high risk of developing non-alcoholic fatty liver disease (NAFLD). NAFLD is the most common chronic liver disorder in the Western world.

Air pollution:
A number of publications have reported that omega-3 intake may help to protect against the adverse health risks associated with particulate air pollution in terms of:

- Lowering the risk of asthma incidents
- Reducing oxidative stress
- Reducing adverse effects on the heart and normalizing the blood lipid profile
- Normalizing heart rate variability
The global omega-3 status map highlights many countries that have low to very low blood levels of EPA and DHA

Despite the considerable research and supporting evidence of a range of positive health benefits associated with omega-3s, a new structured review indicates that adults in most regions of the world have a low to very low status of EPA and DHA. The first systematic review to examine blood levels of omega-3s (specifically EPA and DHA) on a global scale, the paper analyzed 298 studies to create a global map showing the levels of these two long chain fatty acids in the blood stream of healthy adults. The review finds that consumption of EPA and DHA may be too low to have a preventative or positive action on cardiovascular and cognitive health in a number of regions worldwide. Those identified as having a low omega-3 status are believed to be at higher risk of chronic disease, such as CVD and cancer.

North, South and Central America, Central and Southern Europe, the Middle East, Southeast Asia and Africa are all classified as having very low EPA and DHA blood levels (<4%). Interestingly, the regions with indigenous populations or where Westernized food habits have not been adopted, such as The Sea of Japan and Scandinavia, are classified as having a high EPA and DHA (>8%) status. It is anticipated that this unique data will not only be used to provide a better understanding of current levels of omega-3 PUFAs in the blood of healthy adults around the world, but also to help develop regulatory guidelines for intake on a national and global level.
Benefits of optimal omega-3 intake and status

Public health benefits of adequate omega-3 intake

An equally thought-provoking, independent study, recently commissioned by Food Supplements Europe, looks at low omega-3 status from an economic perspective. It found that regular consumption of omega-3 supplements could save €12.9 billion a year in healthcare costs in the European Union alone.38

- The research tested the hypothesis that the potential heart health benefits gained from daily intake of omega-3 supplements among high risk individuals aged 55 and over, could lead to a reduction in the number of costly, CVD-attributed, medical events.
- The findings of the random-effects systematic review were aggregated and the expected relative risk reduction determined to create a theoretical scenario model. The model was then used to establish the difference in benefits and cost that EU healthcare policy makers could expect, if everyone in targeted populations with high CVD risk adopted a daily intake of omega-3.
- Overall, 24% of people aged 55 and over are considered to be at risk of experiencing a hospital event from CVD. The findings of the study indicate that this risk could be reduced by 4.9% through consumption of 1,000 mg a day of omega-3 EPA and DHA. This corresponds to more than 1.5 million fewer CVD-attributed events between now and 2020.

In the United States, a similar report from 2013 states that omega-3 supplementation at a preventative level of 1000 mg a day has a saving potential in avoided CVD-attributed hospital costs of almost US$500 million a year – a US$3.9 billion cumulative healthcare cost saving from 2013 to 2020.39 In addition to cost savings, the report also suggests that the same dose could avoid just over one million CHD-related medical events each year, equating to a relative risk reduction of 6.9%.

Overcoming barriers to effective intake

A recent DSM survey of 7,000 consumers across Europe, Middle East and Africa found that 53% of participants are aware of the health benefits of omega-3s.40 However, previous DSM research41 carried out amongst 11,000 consumers globally, identified a number of consumer barriers for entering or re-entering the omega-3 supplement category:

- Lack of education: the majority of consumers are familiar with omega-3s, but only a few appreciate the full scope of benefits that EPA and DHA can provide across every life stage;
- Inconsistent or unclear on-pack claims: in the US, nearly one out of every two shoppers walk away from the omega-3 aisle without making a purchase due to price/promotion and complexity;47
- Conflicting communication about omega-3 benefits in mainstream media;
- Capsule size;
- Fishy burp and taste;
- Need for multiple dosage to achieve required intake.

Continued research and core competence in innovation in the field of nutritional lipids, allows food manufacturers to create products that directly address these concerns, and are convenient as well as appealing to consumers.

Conclusion: how can adequate omega-3 levels be achieved globally?

Increasing consumer awareness of omega-3s does not appear to be translating yet to adequate daily consumption for the associated health benefits to be gained. Identified consumer barriers to beneficial intake need to be addressed. Therefore, there is an ongoing need to continue to raise awareness amongst healthcare practitioners, consumers and industry that there is a deficiency among a high proportion of healthy adult populations around the world. Education is an integral part of this strategy. It is important to communicate effectively the impact of low and very low blood levels of EPA and DHA – not only in terms of the potential health implications for the individual, but also the much wider issue of pressure on already stretched public healthcare expenditure. Beyond education, it is continuous research and innovation that will allow the creation of new products that overcome consumer barriers and contribute to effective intake.

Importantly, consumers need to be encouraged to ensure that they have a sufficient omega-3 intake in a way that suits their lifestyle. The optimal level of omega-3 can be reached by eating fatty fish, such as salmon, tuna, herring, sardine and anchovy, several times a week. However, this may not be compatible with modern eating habits for many people around the world for a variety of reasons. For many, supplements and/or fortified foods may offer the most convenient and cost effective ways to ensure that the target level of EPA and DHA in the bloodstream is achieved regularly.
Benefits of optimal omega-3 intake and status

For DSM, quality is a way of life. Quality for Life™ symbolizes quality, reliability and traceability. This means that our customers are getting the best ingredients, knowing the source on which they depend. Quality for Life™ means sustainability. It is our commitment to our environment, consumers, our business partners, our people and the regulatory framework that governs our operations.

For more information visit: www.dsm.com/nutritional-lipids

References
1. 31,995; citations found in PubMed for omega-3 PUFA (DHA, EPA) 3, May 2016 (search terms: omega-3, fish oil, cod liver oil, eicosapentaenoic, docosapentaenoic and docosahexaenoic acids).
25. Richardson et al. 2012, “Docosahexaenoic Acid for Reading, Cognition and Behavior in Children Aged 2–9 Years: A Randomized, Controlled Trial.” (The DOLAB Study) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044945
27. SanGiovanni 2009, Omega-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy. AREDS report 30, a prospective cohort study from the Age-Related Eye Disease Study http://www.ncbi.nlm.nih.gov/pubmed/19862276
31. Richardson et al. 2012, “Docosahexaenoic Acid for Reading, Cognition and Behavior in Children Aged 2–9 Years: A Randomized, Controlled Trial.” (The DOLAB Study) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044945
35. Tong et al. 2012, Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution-Induced Cardiac Effects and Lipid Changes in Healthy Middle-Aged Adults http://www.ncbi.nlm.nih.gov/pubmed/26442947
37. Ken D. Stark, Mary E. Van Elswyk, M. Roberta Higgins, Chark A. Weatherford, Neeman Saleem Jr., “Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults.” Progress in Lipid Research, published online ahead of print on 20 May 2016 doi: 10.1016/j.plipres.2016.05.001
42. DSM 2016 VMS/Omega-3 Shopper Study

© DSM Nutritional Products 2016

Although DSM has used diligent care to ensure that the information provided herein is accurate and up to date, DSM makes no representation or warranty of the accuracy, reliability, or completeness of the information. This white paper only contains scientific and technical information on the benefits of optimal omega-3 intake and status. Any explicit and/or implied claims included within this document may not necessarily be appropriate for dietary supplement marketing purposes. Please consult with your independent legal, science and regulatory professionals accordingly. DSM group of companies in the Netherlands and/or other countries, unless explicitly stated otherwise.