Flexible fibre advances

Recent developments in ultra high molecular weight polyethylene (UHMWPE) fibres are helping to enhance device performance and improve treatment results. Han Dols, business development manager Medical, DSM Dyneema, explains why.

With the potential to substantially improve the performance of medical devices and positively impact patient outcomes, medical grade ultra high molecular weight polyethylene (UHMWPE) fibres, developed by DSM Dyneema, could provide a viable alternative to steel. Although steel has had decades of successful use in a broad range of orthopaedic, cardiovascular and other applications, recent advancements in polyethylene technology have supported the emergence of medical grade UHMWPE fibres that offer significant advantages over steel in bending flexibility and fatigue failure, as well as providing specific strength and handling characteristics.

These mechanical properties have presented device makers with the opportunity to improve both patient comfort and surgeon handling, as well as treatment outcomes. Since the release of medical grade UHMWPE fibre in 2004, various device makers have collaborated with fibre developers that are producing a biocompatible UHMWPE fibre according to ISO13485 standard, to examine ways of translating the mechanical benefits into clinical benefits for patients. The fibre's record in some applications is outstanding. As a result of its strength and flexibility, medical grade UHMWPE fibre is now used in millions of patients and is the gold standard for orthopaedic high strength sutures.

While steel will remain the material of choice for many applications - those, for example, where fusion is critical and movement is a risk - UHMWPE fibre represents an exciting add-on to steel to those designers and engineers focused on advancing other device and treatment capabilities. The fibre offers massive innovation potential, especially as a result of the design freedom it offers: the fibres can be processed into linear or 2D/3D constructions including very thin wires, (flat) cables, tubes and sheets of any shape and size.

Stronger than steel

UHMWPE fibres, at similar weight, are up to 15 times stronger than steel. But also at similar volume, the fibre is about four times stronger than titanium and polyester. Its exceptionally high tensile strength of close to 4GPa is enabling medical device manufacturers to design smaller, lower-profile implants for minimally invasive surgical procedures without sacrificing strength and durability. As such, medical-grade UHMWPE fibres offer designers one of the most promising means for realising the benefits associated with minimally invasive implants and techniques including shorter recuperation times and less scarring.

Superior fatigue resistance

The growing population of baby boomers that want to maintain active lifestyles despite hip, knee and spine conditions is fuelling skyrocketing demand for dynamic stabilisation procedures that relieve lower back pain without the loss of motion inherent in traditional spinal fusion techniques. Constructions made with UHMWPE fibres are more flexible and more resistant to fatigue failure compared to steel when subjected to cyclic or fluctuating loads. As such, spinal therapies using this technology are showing tremendous potential to enable preservation of mobility as well as fixation. This combination of
properties opens up a number of opportunities for device manufacturers to improve spinal surgical techniques and devices to meet the needs of this fast-growing demographic.

Better for fragile bones
Another area where UHMWPE fibres are helping the medical community to move beyond steel's limitations is in the treatment of soft, osteoporotic, or cartilaginous bone. Over the last decade interest has grown significantly in identifying the ways this can translate into clinical benefits for the elderly, young or other patients with brittle bones. Metal cables have a narrow contact surface and hence show high focal loads. Focal loads can cause metal cables to cut through bone. However, polyethylene cables flatten when placed under tension, making them potentially more desirable in therapies for patients with fragile bones.

Safer for patients and surgeons
Because it has a low coefficient of friction, UHMWPE fibre slides easily through tissue. In instances where surgeons are navigating through challenging areas - narrow openings or around nerves - this softness and navigability has the potential to reduce the damage that could occur with a tougher or sharper cable such as those constructed with steel.

UHMWPE also has the potential to be safer for surgeons. Steel wires are sharp, and orthopaedic surgeons in particular can require surgeons to exert significant force during a procedure - surgeons have been known to cut themselves on sharp edges of steel cables. Steel typically maintains its shape, whereas the medical grade UHMWPE fibre has the softness of textiles, which is appreciated by surgeons. This contributes to a reduced potential for cutting, without compromising any strength in the device. As such, many surgeons find the material far easier and more comfortable to work with.

While steel is and will remain a primary material for device design, the material benefits of medical grade UHMWPE fibres are just a few of the reasons that growing numbers of device designers and engineers are turning to medical grade UHMWPE fibre constructions in increasing numbers. The new advances in the fibre are bringing designers closer to achieving their goals of improving the performance of existing devices, innovating entirely new devices and, most significantly, improving the lives of both patients and surgeons.

www.dyneemapurity.com

International Dyer

No. 1 For Dyeing & Finishing

International Dyer is the unrivalled world leader in the delivery of vital sector-specific information to textile dyers, finishers, printers and coaters.

For over 125 years International Dyer has kept executives, managers and technologists fully informed on commercial and technical developments. Focusing on new technologies in equipment, dyes, chemicals and compounds, with a unique mix of industry news and informed feature articles, written by a team of specialist textile journalists and expert contributors from around the globe. - International Dyer is an indispensable source for all professionals.

International Dyer subscribers receive free access to the leading textile news service!
This includes a weekly electronic newsletter, plus unrestricted access to the entire archive database, which is home to thousands of textile industry news stories and features. The service is available 24 hours a day, and breaking news articles relating to the reader's area of interest are updated daily.

Price for One Year's Subscription
(11 issues, available in printed or digital format.):

£299.00

To subscribe please contact:
Sue Pritchard
Tel: +44 (0) 1274 378801
Email: spritchard@world-textile.net

November 2009