The automotive industry still has a few hurdles to overcome in the push to electric vehicles. The driving range of the vehicle is a big one, and so is the time it takes to recharge the battery. So far, driving range has been extended by increasing the battery size, or including high-efficiency AC/DC inverters and DC/DC converters, or high-efficiency AC motors. While these are all valid options, they add weight to the vehicle.
Ultimately, the most effective electric vehicles will be designed with miniaturized components that reduce weight and the space they consume in the vehicle. In the future, drivers will have the ability to drive long distances on one single charge, quickly recharge the batteries, plus, enjoy the driving experience along the way.
By increasing the voltage of the batteries, manufacturers can extend the range of the vehicle while also reducing charging time. This will give designers the freedom to design miniaturized components. However, high-voltage charging does place more stringent requirements on the materials used for connectors and insulating parts to keep the vehicle safe.
Most likely, future electric vehicles will feature much higher voltage charging systems to keep charging times convenient. While a battery charging at 400V might take 80 minutes to fully recharge, a battery charging at 800V would be 80% charged in 20 minutes. There is even further potential to reduce charging time—the goal being to reach a charging time similar to the time it currently takes to fuel a vehicle. Research on charging systems up to 1,500V is already being conducted in China, and in Europe infrastructure for 800V is being rolled out.