Although the U.S. has a domestic supply of magnesium, prices of vehicles could still easily increase. Costs of vehicles are already the highest they have ever been due to the microchip shortage, and if this magnesium dynamic hits the U.S., it will raise prices even more, according to Bernard Swiecki, director of research for the Center of Automotive Research in the report Magnesium shortage impacts auto industry globally.
In U.S. the average transaction value is over $45,000 per vehicle. In the EU, the average list price for C-Segment models has grown a full 63% from 2002 to 2020, while B-Segment vehicles saw a 59% increase in the same period, according to a report on the German website Automobilwoche. The shortage could also lead to the possibility of plant closures—OEMS cannot sell millions of cars without a suitable alternative to metal replacement.
Why is magnesium so important to the auto industry?
The addition of magnesium to aluminum alloys increases its strength via solid solution strengthening, improving strain hardening ability. These aluminum alloys with magnesium added are the highest strength non heat-treatable aluminum alloys and are used extensively for structural applications, such as engine mounts and brackets, cross car beams, gears and bearing cages, lightweight air springs, door handles, seat structures, and more.
Also, pure magnesium helps to lightweight vehicles because it is the lightest structural metal currently available in the world. It is approximately 34% lighter by volume than aluminum and 50% lighter than titanium. Other advantages of using magnesium are excellent fatigue resistance, denting and buckling resistance, and the highest known damping capacity of any structural metal. The fact that there is no suitable magnesium alternative for aluminum alloys, and magnesium cannot be stored for long because of oxidation and risk of flammability, makes the supply issue even more critical.
Overcoming magnesium supply concerns
Metal to plastic replacement is a common approach in the automotive industry to decrease weight and the cost of components, and various parts are already realized with advanced engineering plastics. However, during the last two decades the need to switch from aluminum to engineering plastics was never as urgent as it is now. Suitable engineering plastics alternatives can not only lower total weight, increase design flexibility and take out system cost, these engineering plastics can now secure the opportunity to get components manufactured and cars on the road. The alternative—continuing to use magnesium and aluminum while there is a supply shortage of magnesium—could hit the automotive supply chain hard, forcing entire assembly lines to shut down.
DSM's advanced materials solutions are not affected by the magnesium shortage at all, making them a great alternative to metal. Our materials help you to lightweight vehicles—up to 50% weight reduction vs. aluminum. Plus, our materials allow sleek design with high flexibility, improving overall efficacy of the module vs. aluminum/magnesium alloys or pure magnesium designs.
Engineering plastics offer higher manufacturing productivity due to 5x longer tool life of plastics compared to aluminum, along with these features:
- Versus aluminum/magnesium and magnesium, engineering plastics do not require secondary finishing processes, such as drilling, sanding, painting, etc.
- Engineering plastics are inherently corrosion and oxidation resistant.
- Many of our materials are biobased, post-consumer recycled or chemically recycled without the need for any material requalification.
- By 2030, DSM Engineering Materials will offer a full alternative range of our existing portfolio based on bio- and/or recycled-based materials.
- We have multiple compounding sites with global, identical compound specifications in the EU, U.S. and Asia, enabling reliability and fast supply.
Contact us today to learn more about our advanced materials that can replace metal in structural components, freeing you from the magnesium shortage.