A long-standing barrier to increasing the adoption of hydrogen vehicles is the weight and cost of their pressurized fuel tanks – which are typically made of steel or aluminium and limit a vehicle’s range and load capacity. As a result, manufacturers are looking to replace metal hydrogen tank materials with engineering thermoplastics that enable them to simplify designs, reduce part weight and lower production costs.
Yet, the materials selected for producing these parts need to withstand mechanical stress from rapid hydrogen filling and depressurization, as well as extreme temperature changes between -40°C and 85°C. Thermoplastics used to manufacture tank liners, which prevent chemical contamination, corrosion and leakage must comply with regulations that ensure hydrogen is safely stored in a high-pressure environment.
High-density polyethylene (HDPE) is used for numerous tank manufacturing applications, but is susceptible to blistering and requires higher wall thickness compared to polyamides (PA) to meet permeation standards. Standard PA6 materials are cost-effective and demonstrate high thermal resistance, but often become brittle at sub-zero temperatures. To get ahead of competing suppliers, manufacturers need to select a thermoplastic solution that effectively balances their design, performance and cost considerations.
DSM launched Akulon® Fuel Lock 10 years ago to respond to rapidly increasing demand for sustainable materials for vehicles and outdoor equipment. The advanced PA6 is ideal for producing type IV pressure vessels that are 70% lighter than steel alternatives, and offer excellent mechanical strength, dimensional stability, and impact resistance throughout part lifetimes. Akulon Fuel Lock tank liners enhance vehicle safety and fuel efficiency by providing an excellent barrier that reduces permeation leakage of hydrogen from the pressure vessel.