As the automotive industry evolves—phasing out ICE vehicles and manufacturing more electric and hybrid vehicles—more and more knowledge is gained about electrical powertrains. Whether the e-motor will be powered by large battery modules or by a fuel cell in conjunction with a smaller battery, electrification requires new systems and components, such as high-voltage charging, lithium-ion battery technology, fuel cells, power e-motors, and AC-DC inverters or DC-DC converters.
It’s imperative the industry considers safety requirements of these components—if not, consumers would likely suffer major drawbacks in the safety of EVs. Because the electrical powertrain typically operates at high voltage with currents of several hundred amperes, safety has never been as important as it is today.
For example, with a transition to high-voltage electrification with unattended battery charging, the high-voltage system could pose a risk of short circuits or sparks, which could lead to a fire. Also, there have already been multiple reports of serious fires caused by the built-in lithium-ion batteries, even when the car is parked and not running.
What if someone charges their EV at home, in their garage (as shown in the middle image below)? The imminent risk of a dangerous fire burning down the garage and threatening the lives of residents becomes obvious. Based on this scenario, it’s easy to understand why we are going to see more requirements for higher flame retardancy (UL94-V0), Glow Wire Ignition Temperature (GWIT) or Comparative Tracking Index (CTI).