The automotive industry is evolving at an unprecedented rate. As the industry races to keep up with the needs of autonomous vehicles, ride sharing and electric propulsion, OEMs and tier partners need engineering tools that can help them cut development time without compromising on quality or safety. They simply cannot keep up with the rapid change of pace without simulation and virtual prototyping tools.
As designers and engineers replace metal parts with parts made from lightweight thermoplastics, being able to accurately model the part’s performance is critical. The properties of injection-molded, short glass fiber–reinforced thermoplastics can vary depending on temperature, strain rate, and the orientation of the fibers.
Computer-aided engineering (CAE) enables the modeling of these new components, reducing the risks of designing and manufacturing parts made from thermoplastics, increasing confidence in the new design, and ensuring no compromises when it comes to safety, quality, cost and time to market. While there has traditionally been a lot of data and documentation available for metals, it has been more challenging to replicate the behavior of complex materials – until now. Simulations can now integrate the effects of molding processes on material properties to create complex structural Finite Element Analysis (FEA) models.