Engineering plastics have transformed the automotive industry and will continue to have a tremendous impact on the cars of the future. In the 1950s, plastics accounted for 1% of the value of a car. Today, they represent nearly 35%. That number is expected to grow to 50% by 2030, as designers find more applications in powertrains, interiors, exteriors, engine systems and beyond, where they can convert from metal to plastics for weight savings of 40 to 50%. While the weight savings may be small at the level of the individual part, the cumulative effect is substantial. To help you imagine a world where plastics are not used in cars at all, let’s look at an example calculation of the cumulative impact of vehicles that weigh less.
The average mid-sized vehicle weighs 1.5 metric tonnes. By weight, modern cars are composed of 10 to 12% plastic. Let’s assume the vehicle is composed of 12% plastic, achieving a 45% weight reduction in the parts manufactured from plastic. Engineering plastics enable this mid-sized vehicle to save 150kg of weight, reducing fuel consumption by 0.75L/100km, and reducing CO2 emissions by approximately 15g/km. Now let’s extend that weight savings across the 1 billion passenger cars on the road around the globe. The combined weight/fuel savings plastics have enabled for those vehicles, with an average travel distance per vehicle of 13,000km per year, results in a collective fuel savings of 97.5 billion liters per year – that’s enough to fill nearly 40,000 Olympic-sized swimming pools.
The reduction in CO2 emissions is substantial too. This collective fuel savings results in a CO2 reduction of 195 billion kilograms per year. That’s the same quantity of CO2 emissions that results from the annual electricity used in 29.2 million homes. Without plastics in automotive, it would take a forest of 0.93 million square kilometres to sequester the additional CO2 created from fuel emissions – a forest measuring twice the size of California, three times the size of Italy, or nine times the size of South Korea.
Beyond the significant contribution engineering plastics have made to lowering vehicle weight and fuel consumption, they have also helped us to improve vehicle safety through new safety features, reduction in part failure and improved electrical performance as we move closer to the age of fully electronic and fully autonomous vehicles.
At DSM, our portfolio includes a full range of material grades engineered for the specific conditions across a wide variety of automotive applications. Used in applications including chain tensioners, MTD parts, gears, charge air cooler end caps, turbo ducts, front end modules, fire walls and pedals, our materials help designers achieve significant weight savings while also withstanding the sometimes extreme conditions of use. This includes resistance to high temperatures, humidity and chemicals, without losing performance at the material level.
Our next-generation solutions will contribute to further vehicle weight reductions as OEMs strive to meet the average 200kg reduction in vehicle weight needed to meet 2025 emission targets. These solutions include Arnitel HT for air ducts; Stanyl and Akulon Diablo for turbo components; Akulon Fuellock for CNG/H2 tanks; Xytron HR PPS for cooling pump impellers; Akulon PA6 for oil sumps; and Arnitel, ForTii, Xytron or EcoPaXX for crankshaft covers.
Learn more about how our portfolio of materials can meet the extreme automotive challenges of the future on www.dsm.com/automotive.
Market & Strategic Intelligence Director at DSM Engineering Materials
28 September 2018
Market & Strategic Intelligence Director at DSM Engineering Materials
Bert Havenith joined DSM in 1989. He has been active for DSM Engineering Materials a.o. as Application Development Manager E&E for Stanyl/PA46 in Germany, Singapore, Taiwan and Japan, as Product Manager Akulon PA6/PA66, as R&D Manager Automotive, as Business & Innovation Manager Automotive and, currently, as Market & Strategic Intelligence Director. Bert studied Physics at the Technical University in Eindhoven, Netherlands and holds an MBA from the University of Maastricht, Netherland.
Leave your e-mail address below to start receiving the latest news about plastics, new products and events delivered to your inbox.