GlyCare™ LNFP I

Highly abundant fucosylated HMO

GlyCare™ Lacto-N-Fucopentaose I

LNFP I (Lacto-N-fucopentaose I) is a highly abundant, α1-2 fucosylated HMO in human milk.  GlyCare™ LNFP I is presently undergoing development.

Immunity and Infections

Clinical studies suggest a relationship between HMOs and some immune outcomes in infants.  Emerging science suggest that specific HMOs  at the correct level of supplementation may help to reduce the risk of certain infections in infants consuming infant formula and in infants who are breastfed.

Emerging evidence from preclinical studies suggest that LNFP I may support immune health via inhibition of pathogen adherence to the intestinal cell wall1,2,3 and  antimicrobial effects via binding to toxins4,5,1.

Gut Health and Microbiota

Clinical and preclinical studies report that HMOs may help to stimulate the growth of beneficial bacteria, which are believed to be important for development of the microbiota and gut health. Evidence from preclinical studies suggests LNFP I may have a role in gut health via its positive impact on growth of bifidobacteria which are considered to be beneficial in gut health6,7


1. Crane, J. K., Azar, S. S., Stam, A., & Newburg, D. S. (1994). Oligosaccharides from Human Milk Block Binding and Activity of the Escherichia coli Heat-Stable Enterotoxin (STa) in T84 Intestinal Cells. The Journal of Nutrition, 124(12), 2358–2364. 

2. Lindenberg, S., Sundberg, K., Kimber, S. J., & Lundblad, A. (1988). The milk oligosaccharide, lacto-N-fucopentaose I, inhibits attachment of mouse blastocysts on endometrial monolayers. Journals of Reproduction & Fertility, 83.

3. Brassart, D., Woltz, A., Golliard, M., & Neeser, J. R. (1991). In vitro inhibition of adhesion of Candida albicans clinical isolates to human buccal epithelial cells by Fucα1→2Galβ-bearing complex carbohydrates. Infection and Immunity, 59(5), 1605–1613. 

4. El-Hawiet, A., Kitova, E. N., Kitov, P. I., Eugenio, L., Ng, K. K. S., Mulvey, G. L., … Klassen, J. S. (2011). Binding of Clostridium difficile toxins to human milk oligosaccharides. Glycobiology, 21(9), 1217–1227. 

5. El-Hawiet, A., Kitova, E. N., & Klassen, J. S. (2015). Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology, 25(8), 845–854. 

6. Asakuma, S., Hatakeyama, E., Urashima, T., Yoshida, E., Katayama, T., Yamamoto, K., Kumagai, H., Ashida, H., Hirose, J., and Kitaoka, M. (2011). Physiology of consumption of human milk oligosaccha- rides by infant gut-associated bifidobacteria. Journal of Biological Chemistry, 286(40):34583–34592.

7. Zhao, C., Wu, Y., Yu, H., Shah, I. M., Li, Y., Zeng, J., Liu,  B., Mills, D. A., and Chen, X. (2016). The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosac- charide (HMOS) with highly active Thermosynechococcus elongatus α1-2- fucosyltransferase. Chemical Communications, 52(20):3899–3902.

HMO Health Benefit Solutions

Human Milk Oligosaccharides may support a number of health benefits such as immunity and gut health in early life.

More than ingredients

Learn how DSM can help your business. Select the options below to connect your needs with the right solution.

I'd like to explore...

If the options above don't sound like you, skip ahead and contact us.

Quick Links

Food Specialties

Discover enzymes for baking, brewing, dairy and more.

Health Benefit Solutions

Solutions to address consumers' health and lifestyle needs.


Explore our products, services and solutions in our video library.

About DSM

Our purpose is to create brighter lives for all.

Talking Nutrition

Explore new science, consumer insights, industry events and more.


Request samples, place orders and view product documentation.